
Solutions to Jaan Kalda’s Problems in
Kinematics

With detailed diagrams and walkthroughs

Edition 2.0.0

Ashmit Dutta, Daniel Yang, Kushal Thaman, QiLin Xue, Tarun Agarwal

a

b

c

h

F

Updated April 5, 2020

Kalda Kinematics 1

Preface

Jaan Kalda’s handouts are beloved by physics students both in for a quick challenge, to students preparing for
international Olympiads. As of writing, the current kinematics handout (ver 2.0) has 66 unique problems and
45 main ‘ideas’.

This solutions manual came as a pilot project from the online community at artofproblemsolving.com.
Although there were detailed hints provided, full solutions have never been written. The majority of the
solutions seen here were written on a private forum given to those who wanted to participate in making
solutions. In an amazing show of an online collaboration, students from around the world came together to
discuss ideas and methods and created what we see today.

This project would not have been possible without the countless contributions from members of the com-
munity. Online usernames were used for those who did not wish to be named:

Rakshit, Evan Kim, Ameya Deshmukh, Alan Abraham, dbs27, Heramb Podar, Anant Lunia, Sumgato, Viraj
Jayam

Structure of The Solutions Manual

Each chapter in this solutions manual will be directed towards a section given in Kalda’s kinematics hand-
out. There are six major chapters: velocities, accelerations/displacements, optimal trajectories, rigid bod-
ies/hinges/ropes, miscellaneous topics, and revision problems. If you are stuck on a problem, cannot make
progress even with the hint, and come here for reference, look at only the start of the solution, then try again.
Looking at the entire solution wastes the problem for you and ruins an opportunity for yourself to improve.

Contact Us

Despite editing, there is almost zero probability that there are no mistakes inside this book. If there are any
mistakes, you want to add a remark, have a unique solution, or know the source of a specific problem, then
please contact us at hello@physoly.tech. The most current and updated version can be found on our website
physoly.tech

Please feel free to contact us at the same email if you are confused on a solution. Chances are that many
others will have the same question as you.

1

https://www.ioc.ee/~kalda/ipho/
https://www.ioc.ee/~kalda/ipho/kin_ENG.pdf
https://artofproblemsolving.com
hello@physoly.tech
physoly.tech

Kalda Kinematics 2

1 Solutions to Velocities Problems

This section will consist of the solutions to problems from problem 1-9 of the handout. In this section we will
be analyzing the usage of reference frames. Reference frames are defined as point or perspective of an action
or motion from different objects or people. For example, two different reference frames of a car moving on a
round could be one of an observer standing right by the road who sees the car to be moving on the road or the
person inside the car who does not see the car to be moving at all. Reference frames are extremely important
in physics as they allow us to solve seemingly complex problems which become greatly simplified with the use
of reference frames.

pr 1. In a time 2t, the barge moved a distance of 6 km in the ground frame, so this implies that the
speed of the water is:

vwater =
∆d

2t
=

6 km

1.5 hours
= 4 km/h

In the water’s reference frame, the barge is stationary and the boat travels at a constant speed
vboat rel water relative to the water, where:

vboat rel water =
∆d

2t
=

30− 6 km

1.5 hours
= 16 km/h

pr 2. Moving into the frame of the red plane, we see the blue plane with a diagonally directed velocity.

d

800

600

5

1000

The closest approach would be when the faster plane’s path makes a perpendicular line with the slower
plane. This turns out into a geometry problem where we have two similar right triangles. We can break
up the velocity of the blue plane into components (since the displacement is in the same direction as
velocity, this is also the components of its displacement). The top triangle is a 3 − 4 − 5 right triangle
so the bottom right triangle must also be a 3− 4− 5 right triangle.

Now all we need to know now is to determine how far away the blue plane is when it is directly overhead
the red plane. The time it takes to reach this point is:

t =
20 km

800 km/h
= 0.025 h

and the vertical distance it travels during this time is:

∆y = (600 km/h)(0.025 h) = 15 km/h

2

Kalda Kinematics 3

meaning the vertical separation is 5 km/h. Therefore:

d = 4 km

Solution 2: Let us work in the lab frame this time, but break the velocities of the two planes into a
direction perpendicular and towards the other plane. We only need to worry about this radial component.
Originally, the two planes will be nearing each other but will eventually get farther apart. The point at
which this happens is when the radial component of their velocities are directed in the same direction
and have the same magnitude. If we measured their radial acceleration at this point, it would be zero.

y

600

800

x α

α

Thus, we must have:

600 sinα = 800 cosα =⇒ tanα =
4

3

Due to similar triangles, we must also have:
4

3
=
y

x

Let t = 0 be when the fast plane is directly above the slow plane. The vertical separation at this point
is 5 km. Therefore, we have x = 800t and y = 5− 600t We want:

5− 600t

800t
=

4

3

Solving for t and plugging it into x and y can give you the separation, which turns out to be 4 km .

Solution 3: We can use generalized coordinates. The distance between the two planes is:

~d = (20− 800t)x̂+ (−20 + 600t)ŷ = ~s+ ~vt

where ~s ≡ 20x̂ − 20ŷ and ~v ≡ −800x̂ + 600ŷ, which represents the relative velocity. As with before, we
want the relative velocity to be perpendicular to the displacement ~d. One way of doing it is maximizing
the dot product:

|~d× ~v| = |~s× ~v + ~v × ~vt| = |~s× ~v|

At the maximum, this cross product has to be equal to |~d||~v|. Therefore, all we need is to evaluate:

|~d| = |~s× ~v|
|~v|

= 4 km

3

Kalda Kinematics 4

Solution 4: Here’s a standard calculus method. The distance between the two planes after a time t is:

d2 = (20− 800t)2 + (20− 600t)2

d is maximized when d2 is maximized or when:

d

dt

(
(20− 800t)2 + (20− 600t)2

)
= 2(20− 800t)(−800) + 2(20− 600t)(−600)

0 = 4(20− 800t) + 3(20− 600t)

0 = 80− 3200t+ 60− 1800t

t = 7/250

Plugging in t = 7/250 into the distance formula gives:

d = 4 km

pr 3. Consider the following diagram:

v

Moving into the reference frame moving leftward at velocity v/2 gives us the following diagram (where
u is the velocity of intersection):

u
v/2

a/2

r

Using SAS similarity we find that

u

v/2
=

r√
r2 − (a/2)2

u =
v

2r
√
r2 − (a/2)2

=
v

2
√

1− (a/2r)2

4

Kalda Kinematics 5

Solution 2: We start similarly to Solution 1 and move into a reference frame moving left at v/2.

Let y =
√
r2 − a2/4 be the height of of the intersection above the centers of the hoop. We then see that

dy

dt
=
dy

da
· da
dt

=
1√

(2r/a)2 − 1
· v

2

Therefore,

u =
√
u2
x + u2

y =

√
v2

4
+
v2

4
· 1

(2r2/a)− 1

u =
v

2
√

1− (a/2r)2

pr 4. We notice that the graph is quadratic so we can fit it to the equation

α =
π

180

(
−60

49
(t− 7)2 + 60

)
= − π

147
(t− 7)2 + π/3

where α is in radians and t is in minutes.

Since we know that the upward ascending velocity is constant, it is

vy = Lα′(0) = 1000

(
14π

147

)
= 299 m/min = 4.99 m/s

The height is simply
h = vyt = 2000 m

At t = 7 min, the change in elevation angle is momentarily 0, which means that the velocity vector also
points at 60 degrees.

Thus we can get

vx = vy tan(30◦) ≈ 2.8 m/s

You don’t need the equation of the curve to perform calculations, but even without it, the answer can appear a bit off.
e.g. the initial slope you get could be:

4◦/0.2 min = 0.0698 rad/12 sec = 0.00582 sec−1

5

Kalda Kinematics 6

pr 5.

v

u

Ff

In the board’s frame of reference, there is only a horizontal force (the friction force), which has a constant

direction that is anti-parallel to the velocity. Thus, the chalk moves in a straight line .

pr 6. Let us assume that the block is originally pushed leftwards in the frame of the ground and the
conveyor is travelling upwards.

In the frame of the conveyor belt, the block is moving with a speed of
√

5 m/s. This is represented by
the red vector. Due to friction opposing the motion, the direction of motion relative to the belt will be
constant. The magnitude will steadily decrease to zero.

To move back to the frame of the ground, we can add back the velocity of the conveyor belt, as shown
below.

1 m/s

2 m/s

√
5 m/s

θ

The blue vector shows the velocity of the block relative to the ground. Initially, it is 2 m/s but as friction
reduces the magnitude of the red vector (which represents the velocity relative to conveyor belt), the
blue vector will decrease to a minimum. This minimum occurs when it forms a right angled triangle
(represented by the dotted lines).

Therefore, the minimum velocity of the block relative to the ground is

v = 1 sin θ =
2√
5

6

Kalda Kinematics 7

pr 7.

v cosα
α

v

uL
v cosα

ut

s

Denote the dashed line by the wall which is a distance L away from the point source.

We express the lateral displacement of the ball as the sum of two components: lateral displacement in
the air’s frame of reference, and the lateral displacement of the moving frame.

In the air’s frame the displacement is given by

utair =
uL

v cosα

and the lateral displacement in the moving frame is given by s. This gives us

ut =
uL

v cosα
+ s =⇒ t =

s

u
+

L

v cosα

pr 8. Draw a right trapezoid as follows:

We decompose ~v into parallel and perpendicular components, ~v = ~vx + ~vy; let us mark points A,B and
C so that AB = ~vx and BC = ~vy (then, AC = ~v).

Next we mark points D,E and F so that CD = ~v′y = ~vy, DE = − ~vx, and EF = 2 ~ux; then, CF =
~v′y − ~vx + 2 ~ux ≡ ~v′ and AF = 2~vy + 2 ~ux ≡ 2~u.

Due to the problem conditions, ∠ACF = 90◦.

α

α

β

AB

C

D E

F

−~vx

~v′y = ~vy

~vy

~vx

2~vy + 2 ~ux = 2~u

2 ~ux

7

Kalda Kinematics 8

We now can see that ∆ACF is an isoceles triangle containing the lengths provided in the figure below.

Let us also mark point G as the centre of AF ; then, FC is both the median of the right trapezoid ABDF
(and hence, parallel to AB and the x−axis), and the median of the triangle ACF .

α

α

β

A

C

F

~v

~u

~u

By splitting ∆ACF into it’s median, we find,

u cosα =
v

2
=⇒ u =

v

2 cosα
.

For this to also happen, we see that β = 180− 2α because ∆ACF is an isoceles triangle.

pr 9. We move into the reference frame that is rotating clockwise at ω about the center of the mirror

(i.e. the mirror is stationary).

a

S

ω

ω

S ′

In this frame of reference, the image S′ has angular velocity ω clockwise about the center of the mirror.

Moving back into the reference frame where S is stationary, we see that S′ is moving with angular velocity
2ω about the center of the mirror, so the image has speed

v = 2ωa

8

Kalda Kinematics 9

2 Solutions to Accelerations/Displacements Problems

This chapter will contain problems 10-16 of the handout. In this section, we will be analyzing the usage of
non-constant velocity and graphs. When an object does not have a constant velocity, there is an acceleration
present meaning that the object is either speeding up or slowing down. The implementation of acceleration and
graphs allows us to figure out many problems. In this section, we will also be looking at the implementation of
cutting into tiny pieces and integrating to derive a result.

pr 10. Consider the following graph:

−2

0

2

4

6

5 10 15
t (s)

v (m/s)

Since the particle starts from the origin, the distance graph is simply the area under the velocity graph:

0

2

4

6

8

10

12

14

16

18.75

5 10 15 20

t (s)

d (m)

We need to find the maximum displacement, so our answer is 18.75 m

9

Kalda Kinematics 10

pr 11. Let us divide the displacement into tiny pieces, s =
∑

∆s where ∆s = v∆t.

If the function v(t) were known, the last formula would have been completed our task, because
∑
v(t)∆t

is the sum of rectangles making up the area under the v − t-graph.

However, the acceleration is given to us as a function of v, hence we need to substitute ∆t with ∆v.

While trying to do that, we can introduce the acceleration (which is given to as a function of v):

∆t = ∆v · ∆t

∆v
=

∆v

∆v/∆t
=

∆v

a
.

In other words

s =
∑ v

a
∆v =

∫
v

a(v)
dv.

This tells us that the answer is equal to the area under a graph which depicts
v

a(v)
as a function of v.

Applying a quartic least-squares fit to some of the discernible data points, we can see that the curve a(v) is
well approximated by the function 0.00617211v4−0.0301639v3 +0.0581573v2 +0.0546369v+0.000715828.

Taking the integral, we can see that∫ 4

0

v

a(v)
dv ≈

∫ 4

0

v

0.00617211v4 − 0.0301639v3 + 0.0581573v2 + 0.0546369v + 0.000715828
dv

≈ 39 m

Don’t worry if your answer isn’t exactly the same as ours, as this result may be difficult to determine by hand with the
graph provided. A rough approximation (within reasonable limits) would suffice.

pr 12.

α α

A

B
x

In the reference frame of ball A, ball B accelerates to the left with

aB = 2g sinα cosα

We can find that the initial length |AB| is

g
(
t21 − t22

)
sinα

2

10

https://www.wolframalpha.com/input/?i=fit+%7B0%2C0%7D%2C%7B2%2C0.2%7D%2C%7B3.1%2C0.4%7D%2C%7B4%2C0.8%7D%2C%7B3.3%2C0.46%7D%2C%7B2.3%2C0.24%7D%2C%7B2.4%2C0.26%7D%2C%7B0.7%2C0.06%7D%2C%7B1.7%2C0.16%7D%2C%7B0.5%2C0.04%7D
https://www.wolframalpha.com/input/?i=integral+from+0+to+4+of+x%2F%280.00617211+x%5E4+-+0.0301639+x%5E3+%2B+0.0581573+x%5E2+%2B+0.0546369+x+%2B+0.000715828%29

Kalda Kinematics 11

Therefore,

x =
g
(
t21 − t22

)
sinα cosα

2

Since there is no relative acceleration in the y-direction, we need

aBt
2

2
= x

gt2 sinα cosα =
g
(
t21 − t22

)
sinα cosα

2

t =

√
t21 − t22

2

Solution 2: Each ball will accelerate with the same acceleration down their platform, meaning that
they will travel the same distance in the same timeframe.

Let x be the distance traveled by the individual balls and k be the distance between the two balls. Let
the height of the ball at point A be h1 and the height of the ball at point B be h2.

If you draw a diagram you will find that there is a triangle formed by the position of the two balls and

the intersection of the planks. The lengths of the triangle are x, x− h1 − h2

sinα
, k.

α α

A

B
O

x

k

h1 − h2

sinα
− x

By the Law of Cosines, we have

k2 = x2 +

(
h1 − h2

sinα
− x
)2

− 2x

(
h1 − h2

sinα
− x
)

cos(2α)

Let β =
h1 − h2

sinα
for simplicity.

Simplifying the expression, we get that

k(x) =
√

2x2(1 + cos (2α))− 2xβ(1 + cos (2α)) + β2

After taking the derivative of the quadratic and setting it equal to zero, we get that

xm = − B

2A
=
β

2

11

Kalda Kinematics 12

Using acceleration along the ramp we can also find that

h1

sinα
=
gt21 sinα

2

h2

sinα
=
gt22 sinα

2

xm =
gt2m sinα

2
=
h1 − h2

2 sinα

Plugging in everything we find that

tm =

√
h1 − h2

g sin2 α

=

√√√√√ gt21 sin2 α

2
− gt22 sin2 α

2
g sin2 α

=

√
t21 − t22

2

pr 13.

d

g sinα

g cosα

Let t be the time it takes the ball to hit the ramp. Therefore, we find that

d =
1

2
at2 =⇒ d =

1

2
g cosαt2 =⇒ t =

√
2d

g cosα
.

Now, we note that the total time T = 3t because the ball travels a distance d to collide with the ramp,
bounces up a distance d to the vertex of its parabolic trajectory, and then falls back down for the final
distance d.

This means that the distance between both bouncing points s is found by

s =
1

2
g sinα(T 2 − t2)

s =
1

2
g sinα(8t2) = 4g sinα

(
2d

g cosα

)
s = 8d tanα

12

Kalda Kinematics 13

Solution 2: Consider the following diagram:

α

90− α

d

L

We rotate the plane by α counterclockwise such that gravity now has acceleration g cosα in the y-direction
and g sinα in the x-direction.

When the ball hits the plane, it strikes with velocity v0 =

√
2gd

sin (90− α)
at an angle 90 − α to the

inclined plane.

Then, we use modified projectile motion to get that

t =
2v0 sin (90− α)

g cos (α)
=

2v0

g

We also have that

L = v0 cos (90− α) t+
1

2
g sin (α) t2

=
2v2

0 cos (90− α)

g
+

4v2
0g sin (α)

2g2

=
2v2

0 sin (α)

g
+

2v2
0 sin (α)

g

= 8gd tanα

13

Kalda Kinematics 14

pr 14.

α
β

v0

When on the plane, the puck experiences no change in its x-velocity, which is

v0 cosβ = 5 m/s

However, it experiences an acceleration parallel to the plane with magnitude

a = g sinα

We note from the trajectory given that the puck drops 2.5 m below the apex of its trajectory while
undergoing a horizontal displacement of x = 5 m.
The time it takes to complete this motion is

t =
x

v0 cosβ
= 1 s

Therefore, we have that

gt2 sinα

2
= 2.5

sinα =
5

gt2

α ≈ 30◦

pr 15. Due to symmetry the turtles meet at the centroid of the triangle formed, and form an equilateral
triangle at any instant. The velocity of the first turtle with respect to the other is obviously

0.1 cos (60◦) m/s

Thus, the relative velocity of separation is

v(1 + cos (60◦)) =
3v

2

Since this is constant, the time taken for the turtles to meet is

t =
d
3v
2

=
2d

3v
= 6.7 s

14

Kalda Kinematics 15

Solution 2: The path length of any turtle in the motion is simply

ds = dr

√
1 +

(
rdθ

dr

2)
Using polar coordinates, one can deduce that

dr

dt
= −10 sin (60◦)

v
dθ

dt
=

10

2
= 5

Hence we have
dθ

dr
= − 1

r
√

3
⇒ ds =

2dr√
3

Since t =
ds

10
, we find the total time by integrating this expression:

∫ T

0
dt = − 2√

3v

∫ 0

1√
3

dr

T =
2d

3v
= 6.7 s

pr 16. Note that

dk =
ds

L(t)
=

vdt

L+ ut
.

Integrating both sides gives us ∫ 1

0
dk =

∫ T

0

vdt

L+ ut

Using a s substitution s = L+ ut⇒ dx = udt and rearranging the integral gives us

1 =
v

u

∫ T

0

dx

s
=⇒ u

v
= ln(ut+ L) |T0

u

v
= ln

(
uT + L

L

)
Substituting the values given in the problem tells us

100 = ln

(
uT + L

L

)
=⇒ e100 =

uT

L
+ 1

T = e100 − 1

15

Kalda Kinematics 16

3 Solutions to Optimal Trajectories Problems

This section will contain problems 17-22 of the handout. In this section, we will be analyzing trajectories. You
should have a good understanding of conics (parabolas in general) and projectile motion before getting into
this section. There are a lot of proofs and sometimes more they have more math than what you would call
physics. However, don’t be demotivated, there are a lot of great problems in this section and some of these
problems have ties to other areas of physics.

pr 17.

α

O

PM

A

l

h

One extreme case that we must consider first is directly travelling along the path AO, which gives

t =

√
l2 + h2

v

We’ll deal with this later, but we first use fact 5, as shown in the following diagram:

α

O

PM

Aφ

φα

x
x′

16

Kalda Kinematics 17

We use φ as defined above to make calculations easier and we get that

sinφ

sinα
=
v

u

φ = arcsin

(
v sinα

u

)
Since

x′ = l − h tanφ

x = (l − h tanφ) cosα

We also have that

t =
h

v cosφ
+
x tanα

u

=
h

v cosφ
+

(l − h tanφ) sinα

u

=
h

v cosφ
− h sinφ sinα

u cosφ
+
l sinα

u

=
h

v cosφ
− h sin2 φ

v cosφ
+
l sinα

u

=
h cosφ

v
+
l sinα

u

However, we must also note that, when φ ≥ arctan

(
l

h

)
, the boy never actually reaches side OP .

Therefore, our answer is

x = (l − h tanφ) cosα, t =
h cosφ

v
+
l sinα

u
if φ < arctan

(
l

h

)
x = 0, t =

√
l2 + h2

v
otherwise

pr 18. Solution 1 (Fermat’s Principle):

α

n1 = 1

n2 = v+w
u

a

A

Let us move into the reference frame of the river such that everywhere in the water, the boy is travelling
at a constant speed u. This might seem troublesome at first because his destination would be moving,
but that doesn’t trouble us at all. As it will soon be made clear, the angle α the boy makes with the
shore-line will be independent of how far away the target is.

Consider a light beam that starts off from A and ends up travelling with a speed of v+w parallel to the

17

Kalda Kinematics 18

shoreline. Since it will take the fastest path, the boy will need to mimic this behavior. Snell’s Law gives:

n1 sin(90◦) = n2 sinα =⇒ sinα =
u

v + w
=⇒ α = arcsin

(
u

v + w

)
The total time the boy spends swimming is:

t =
d

u
=

a

u cosα

Relative to the water, the boy swims a horizontal distance a tanα. The water during this time flows a
distance wt = wa

u cosα in the opposite direction. Therefore, the horizontal distance x is:

x = a
(w

u cosα
− tanα

)

Solution 2 (Huygens Principle):

θ

θ

(w + v)t

ut

A

O B

Consider the same setup as before by moving into the frame of the river. This time however, the path
is reversed. The boy starts running from point O along the shore and eventually starts swimming to
location A. Imagine the boy emitting Chernenko radiation as he moves as shown in the diagram. The
wave speed is u while the speed of the boy is w+v > u. Physically, the outlines of all the circles represent
the superposition of all the points in which the boy can be at after a time t.

Due to Huygen’s Principle, we can see that this forms a wavefront that is moving towards A at a speed of
u. We can let this wavefront evolve until a part of it eventually reaches the point A. The path that this
part of the wave takes will represent the optimal path of the boy, that is, perpendicular to the wavefront.
We can determine the angle θ by considering two extreme paths the boy can take.

First, the boy can start swimming immediately and reach a distance ut after a time t. During this period,
the boy can also run a distance (w + v)t. The angle θ is thus given by:

cos θ =
u

w + v

and thus the angle α = 90◦ − θ normal to the shore is

α = arcsin

(
u

w + v

)
This is the same angle found in the first solution and as a result we can copy the exact steps to determine
x.

18

Kalda Kinematics 19

pr 19. We split up v into it’s vertical and horizontal components. From here we can see that each
parameter x, y and z as a function of t is

z = v0t sinα− 1

2
gt2 (1)

x = v0 cosαt (2)

t =
x

v0 cosα
(3)

From here, we substitute equation 3 into equation 1 to yield

z = v0

(
x

v0 cosα

)
sinα− 1

2
g

(
x

v0 cosα

)2

.

Simplifying with trigonometry yields

z = x tanα− gx2

2v2
0

sec2 α

z = x tanα− gx2

2v2
0

(tan2 α+ 1)

0 =
gx2

2v2
0

tan2 α− x tanα+
gx2

2v2
0

Here, we find a quadratic. For the region of space R to exist, the discriminant of this quadratic must be
greater than zero. This tells us

x2 − 4

(
gx2

2v2
0

)(
z +

gx2

2v2
0

)
≥ 0

x2 − 2gx2

v2
0

z +
g2x4

v4
0

≥ 0

2gx2

v2
0

z ≤ x2 − g2

x4
v4

0

Simplifying this final expression gives us the answer. The region of space of R is

z ≤ v2
0

2g
− gx2

2v2
0

pr 20. Note that for a parabola with equation x2 = 4p(z − k), the focus is located at (0, k + p)

In problem 19, we have the equation

z ≤ v2
0

2g
− gx2

2v2
0

and with some manipulation we obtain

x2 =
v4

0

g2
− 2v2

0

g
z.

Factoring the equation gives

x2 = −2v2
0

g

(
z − v2

0

2g

)

19

Kalda Kinematics 20

x2 = 4

(
−v

2
0

2g

)(
z − v2

0

2g

)
Therefore, the focus of the parabola is at(

0,
v2

0

2g
− v2

0

2g

)
= (0, 0).

In problem 19, we assumed that the cannon was located at (0, 0), and so we are done.

pr 21. First, we make the following claim:

Claim: The optimal-velocity trajectory must contain both endpoints of the roof along its path.

Proof: Assume for the sake of contradiction that the optimal-velocity trajectory hits neither one of the
two endpoints of the roof. Then, we can clearly see that reducing the velocity by an small amount would
still result in the stone clearing the roof.

Now assume that the optimal-velocity trajectory hits only one of the two endpoints of the roof. In both
cases, the thrower can displace themself horizonally by an small amount, resulting the stone hitting
neither one of the two endpoints.

Thus, the optimal-velocity trajectory must contain both endpoints of the roof.

By idea 28, we can set the rightmost point of the roof (point F) to be the focus of the region R of all
possible trajectories. Optimally, this parabola should pass through the left end of the roof.

a

b

c

v

h

F

v0

By fact 9, we have that

h =
a+ b− c

2

20

Kalda Kinematics 21

We know that if the projectile is thrown straight up, it hits the top of the red parabola, so

1

2
v2 = gh

v =
√
g(a+ b− c)

By idea 32, we have that

1

2
v2 + gh = constant

1

2
v2

0 =
1

2
v2 + gc

v0 = vmin =
√
g (a+ b+ c)

Solution 2: We begin this solution by also proving that the optimal-velocity trajectory must pass
through the two endpoints of the roof.

Then, we set of coordinates of F to be (0, 0), so the coordinates of the left end of the roof are(√
b2 − (a− c)2, a− c

)
, where we have taken the absolute value of the x-coordinate to make calcu-

lations easier.

Let θ = arctan

(
a− c√

b2 − (a− c)2

)
, let the initial launch angle (to the horizontal) be α, and let the initial

velocity of the stone be v0.

θ

b
a− c

√
b2 − (a− c)2

The equation for the slope of the roof is given by

y = x tan θ

Along the slope of the roof, we have that

x = v0t cosα

y = v0 sinαt− gt2

2

v0 sinαt− gt2

2
= v0t cosα tan θ

t =
2v

g
(sinα− cosα tan θ)

It suffices to maximize the horizontal distance travelled, which is

x =
2v2 cosα

g
(sinα− cosα tan θ)

21

Kalda Kinematics 22

Taking the derivative with respect to α, we get that

dx

dα
=

2v2

g

(
2 tan θ sinα cosα− sin2 α+ cos2 α

)
=

2v2

g cos θ
cos (θ − 2α)

=⇒ α =
π

4
+
θ

2

From this, we can find that

sinα =

√
a+ b− c

2b

cosα =

√
−a+ b+ c

2b

cos θ =

√
b2 − (a− c)2

b

tan θ =
a− c√

b2 − (a− c)2

Then, we must have that

vt cosα = b cos θ

2v2 cosα (sinα− cosα tan θ)

g
= b cos θ

v =

√
gb cos θ

2 cosα(sinα− cosα tan θ)

Plugging everything in, this simplifies (quite miraculously) to

v =
√
g(a+ b− c)

Applying conservation of energy to find the velocity at the ground, we see that

v0 =
√
g(a+ b+ c)

pr 22. Assume you are at (0, 0), and let the target be at (x0, y0), x0 > 0.

The trajectory of the projectile is defined by

y = x tan(θ)− gx2

2v2 cos2(θ)

the slope of the projectile (as a function of x) is thus

dy

dx
= tan(θ)− gx

v2 cos2(θ)
.

It suffices to prove that

tan(θ)

(
tan(θ)− gx0

v2 cos2(θ)

)
= −1

22

Kalda Kinematics 23

since v2 cos2(θ) =
gx2

0

2(x0 tan(θ)− y0)
, it suffices to prove that

tan(θ)

(
tan(θ)− 2(x0 tan(θ)− y0)

x0

)
= −1

we know that

v =

√
gx2

0

2 cos2(θ)(x0 tan(θ)− y0)
.

Minimizing v means maximizing

cos2(θ)(x0 tan(θ)− y0) = x0 sin(θ) cos(θ)− y0 cos2(θ)

therefore, taking the derivative, we get that we need − cot(2θ) =
y0

x0
.

Plugging this in, we can verify that

tan(θ)

(
tan(θ)− 2 tan(θ) +

2y0

x0

)
= tan(θ)(− cot(θ)) = −1

Solution 2:

Due to idea 28, together with facts 6, 7, and 9, a vertical ray directed at the target is reflected by the
projectile’s trajectory to the focus, i.e. to the cannon.

When making use of idea 26, we see that this projectile’s trajectory is also optimal for shooting the
cannon’s position from the location of the target; hence, the projectile’s trajectory reflects a vertical ray
directed to the cannon towards the target.

If we combine these two observations we see that a vertical ray directed to the cannon is rotated after
two reflections from the trajectory by 180◦, which means that the reflecting surfaces must have been
perpendicular to each other.

23

Kalda Kinematics 24

4 Solutions to Rigid Bodies/Hinges/Ropes Questions

This section will contain problem 23-27 of the handout. Some of the hardest problems in kinematics come from
rigid bodies/hinges/ropes. These types of problems generally want the solver to calculate a certain aspect of
motion of a singular system or multiple systems of objects interacting with each other. When solving these
types of problems. it is best to analyze how the motion will happen before getting right into the equations.

pr 23.

v1

v2

O

l1

l2

We know by idea 33 that the instantaneous axis of rotation O of the object exists.

Let l1 and l2 be the distance from O to the top and bottom boards, respectively.

In fact, we have that
l1
l2

=
|v1|
|v2|

By the properties of the instantaneous axis of rotation, we know that all points with speed |v1| lie on a
circle centered at O with radius l1, and all points with speed |v2| lie on a circle centered at O with radius
l2.

24

Kalda Kinematics 25

pr 24.

2v

v

R

As the wheel is rolling, we have that ω =
v

R
.

The speed of the highest point in the lab frame is

v + ωR = 2v

Therefore, we find that the centripetal force at the highest point is

ac =
(2v)2

r

The speed of highest point in frame of wheel’s centre is ωR = v.

Therefore, the centripetal force in the wheels center is

ac = ω2R =
v2

R

As both frames are inertial frames,
v2

R
=

4v2

r
=⇒ r = 4R

pr 25. a)

v

v

30◦

30◦

2L

2L

25

Kalda Kinematics 26

First we can find that the horizontal projection of the acceleration is
v2

0

2l
.

Then, since the velocity of the joint and the end are equal, there can be no centripetal acceleration, so
the direction of the total acceleration must be perpendicular to the right rod, thus

v2
0

2l
= a cos 30◦ =⇒ a =

v2
0√
3l

b) If we take the frame of reference moving upward at v0, it is essentially the same setup and thus

a =
v2

0√
3l

pr 26.

α

v

R

From constraints on the thread we can determine that

ωR = vCM sinα

For a no-slipping condition, we have

vCM = v0 − ωR⇒ vCM =
v0

1 + sinα

Solution 2: We move into the frame moving left with velocity v

sinα =
v0dt

(v − v0)dt
=

v0

v − v0

v0 =
v sinα

1 + sinα

Moving back into the reference frame of the wall, we get

v0 = v − v sinα

1 + sinα
=

v

1 + sinα

26

Kalda Kinematics 27

pr 27.

α

v

u

Since the length of the rod is constant, we can consider the equation

x2 + y2 = L2

Differentiating with respect to time, this gives

2x
dx

dt
+ 2y

dy

dt
= 0

xu+ yv = 0

u = −v y
x

= −v tanα

Now, we find the acceleration

a =
dv

dt
=
d(u tanα)

dt

Since u is constant, we have

a = u
d tanα

dt
= u sec2 α

dα

dt

The angular velocity
dα

dt
is simply

dα

dt
=
u cosα+ v tanα sinα

L
=

u

L cosα

This means that

a = u sec2 α
dα

dt
=

u2

L cos3 α

27

Kalda Kinematics 28

5 Solutions to Miscellaneous Problems

This section will contain problem 28-34 of the handout. These problems are ones that are too unique or different
to be placed under one singular category. Therefore, all of these problems got their own category by themselves,
the Miscellaneous Problems Category. These problems are generally pretty interesting, but beware! You may
have to take out a compass and straightedge for some of these problems!

pr 28. Consider a reference frame moving with speed u opposite to the direction of the cars.

Cars at the end will be moving with speed v + u, and the distance between them will be vτ .

Cars at the front will be moving at speed u (because they are stopped) and have a distance l between
them.

Now we take ratios of speed to length and equate them to get

vτ

v + u
=
l

u

vτu = vl + ul

vτu− ul = vl =⇒ u(vτ − l) = vl

u =
v

vτ/l − 1
≈ 3.4 m/s

pr 29.

A BM

vt

utα

C

P

Consider the diagram above, where A is the engine of the left train, B is the engine of the right train,
M is the midpoint of AB, P is the intersection of the smoke trails, and C is that intersection projected
onto line AB.

Since both trains travel at v = 50 km/h, M is where the two trains met. In the time it took the trains
to travel from M to A and B, the wind caused the smoke to drift from point M to point P .

Let us set an arbitrary scale of 1 cm = 100 km.

28

Kalda Kinematics 29

Measuring , we find that

|AB| = 15.8 cm

|AM | = 7.9 cm = vt

t = 15.8 h

|PM | = 2.3 cm = ut

u = 14.55 km/h ≈ 15 km/h ≈ 4.2 m/s

α ≈ 27◦

Don’t worry if you didn’t set the same scale or measure the same distances as us; however, the ratios of your distances
and the final answer should still remain (approximately) the same

pr 30. From the first two collisions, we can deduce that all three bodies lie on the same plane. For
simplicity, let this be the x-y plane.

Additionally, we can assume that all three bodies lie on the x-axis, with body a at the origin O. We can
then plot the motion of the bodies in three dimensions (with time as the third dimension) as follows:

Since body a collides with body b, both the trajectories of a and b must lie on some unique plane P in
our 3-D plot.

Since body a collides with body b, both the trajectories of a and c must lie on some unique plane P ′ in
our 3-D plot.

However, both P and P ′ contain the trajectory of A and the x-axis, so they must be the same plane.

Therefore, yes , b and c would collide if a is missing.

29

//
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh)
{
 var t=new Matrix4x4(mesh.transform);
 if(mesh.parent.name != "") {
 var parentTransform=fulltransform(mesh.parent);
 t.multiplyInPlace(parentTransform);
 return t;
 } else
 return t;
}

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
 var node=nodes.getByIndex(i);
 var name=node.name;
 var end=name.lastIndexOf(".")-1;
 if(end > 0) {
 if(name.charAt(end) == "\001") {
 var start=name.lastIndexOf("-")+1;
 if(end > start) {
 node.name=name.substr(0,start-1);
 var nodeMatrix=fulltransform(node.parent);
 var c=nodeMatrix.translation; // position
 var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
 bbnodes.push(node);
 bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
 }
 }
 }
}

var camera=scene.cameras.getByIndex(0);
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
 var T=new Matrix4x4();
 T.setView(zero,camera.position.subtract(camera.targetPosition),
 camera.up.subtract(camera.position));

 for(var j=0; j < bbcount; j++)
 bbnodes[j].transform.set(T.multiply(bbtrans[j]));
 runtime.refresh();
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();

//
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard, be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys
// and caled using the s and S keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts and
// groups of parts in the 3D scene. Parts which have been selected with the
// mouse can be scaled moved around and rotated like the cross section as
// described above. To spin the parts around their local up-axis, keep
// Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 if(
 clip=scene.nodes.getByName('$$$$$$')||
 clip=scene.nodes.getByName('Clipping Plane')
);
 for(var i=0;i<scene.nodes.count;i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd==clip||nd.name=='') continue;
 var ndUTFName='';
 for (var j=0; j<nd.name.length; j++) {
 var theUnicode = nd.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 ndUTFName += theUnicode;
 }
 var end=nd.name.lastIndexOf('.');
 if(end>0) var ndUserName=nd.name.substr(0,end);
 else var ndUserName=nd.name;
 respart=' PART='+ndUserName+'\n';
 respart+=' UTF16NAME='+ndUTFName+'\n';
 defaultvals=true;
 if(!nd.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(nd.opacity<1.0){
 respart+=' OPACITY='+nd.opacity+'\n';
 defaultvals=false;
 }
 if(nd.constructor.name=='Mesh'){
 currender=defaultrender;
 switch(nd.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 }
 if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
 var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
 var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
 var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +nd.transform.translation.x+' '
 +nd.transform.translation.y+' '
 +nd.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=host.util.printf(
 ' VISIBLE=%s\n', clip.visible);
 res+=host.util.printf(
 ' PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
 clip.material.emissiveColor.g, clip.material.emissiveColor.b);
 res+=host.util.printf(
 ' OPACITY=%s\n', clip.opacity);
 res+=host.util.printf(
 ' INTERSECTIONCOLOR=%s %s %s\n',
 clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
 res+=' END\n';
// for(var propt in clip){
// console.println(propt+':'+clip[propt]);
// }
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected&&e.node.name!=''){
 target=e.node;
 }else{
 target=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 var clip=null;
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
 scene.nodes.getByName('Clipping Plane')){ //added via context menu
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 if(clip){//plane in predefined views must be rotated by 90 deg around normal
 clip.transform.rotateAboutLineInPlace(
 Math.PI/2,clip.transform.translation,
 clip.transform.transformDirection(new Vector3(0,0,1))
);
 }
 for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
 target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var backtrans=new Matrix4x4();
 var trgt=null;
 if(target) {
 trgt=target;
 var backtrans=new Matrix4x4();
 var trans=trgt.transform;
 var parent=trgt.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 if(
 trgt=scene.nodes.getByName('$$$$$$')||
 trgt=scene.nodes.getByName('Clipping Plane')
) var trans=trgt.transform;
 }
 if(!trgt) return;

 var tname=trgt.name;
 if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
 if(target)
 var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
 else
 var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
 var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

 //get the centre of the mesh
 if(target&&trgt.constructor.name=='Mesh'){
 var centre=trans.transformPosition(trgt.computeBoundingBox().center);
 }else{ //part group (Node3 parent node, clipping plane)
 var centre=new Vector3(trans.translation);
 }
 switch(e.characterCode){
 case 30://tilt up
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
 break;
 case 31://tilt down
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
 break;
 case 28://spin right
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 29://spin left
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 120: //x
 translateTarget(trans, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(trans, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(trans, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(trans, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(trans, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(trans, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 case 83: //shift + s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1/1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 }
 trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
 var curTrans=getCurTrans();
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(target){
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 if(target.constructor.name=='Mesh'){
 var centre=trans.transformPosition(target.computeBoundingBox().center);
 }else{
 var centre=new Vector3(trans.translation);
 }
 target=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 if(
 scene.nodes.getByName('$$$$$$')||
 scene.nodes.getByName('Clipping Plane')
){
 clip.remove();clip=null;
 }
 }
 restoreTrans(curTrans);
 return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
 var tA=new Array();
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd.name=='') continue;
 tA[nd.name]=new Matrix4x4(nd.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(tA[nd.name]) nd.transform.set(tA[nd.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

Kalda Kinematics 30

pr 31.

R′

ΩRt

R
α

In the free-falling frame, all the particles move with constant velocities; each particle had initial velocity
equal to the wheel’s velocity at the releasing point, i.e. tangential to the wheel and equal by modulus to
ΩR. Hence the ensemble of particle expands as a circle, the radius of which can be calculated from the
Pythagorean theorem.

R′2 = R2 + Ω2R2t2 =⇒ R′ = R
√

1 + Ω2t2

In the lab frame, the centre of the circle performs a free fall d = 1
2gt

2 −R. A droplet reaching the point
A corresponds to the expanding circle touching the ground. Therefore, setting R′ = d gives us

R
√

1 + Ω2t2 =
1

2
gt2 −R

1

4
g2t2 − gRt2 +R2 = R2 +R2Ω2t2

1

4
g2t2 − gR = R2Ω2

t2 =
4
(
Ω2R2 + gR

)
g2

=⇒ t = 2

√
R

g

(
1 +

RΩ2

g

)

We can also tell from the given diagram that

α = arctan

(
ΩRt

R

)
=⇒ α = arctan (Ωt)

30

Kalda Kinematics 31

pr 32. Let us make the assumption that the width of each propeller is much larger than a single pixel
and the speed of the propellers aren’t too fast. The reason we need to make this assumption is that this
will prevent a propeller from being missed completely.

We can imagine a physical vertical line transverse the propellers as they spin. Every time a propeller
passes this line, it will be caught on camera. We also make the assumption that the propellers are
straight and equally spaced; this is what we should expect in a real life scenario.

a) To determine the direction of rotation of the blades, we note that the blades are more frequently
spaced on the top side than the bottom side. This implies the blades have a higher speed relative to the
moving line than the blades at the bottom. Although they have the same speed in the lab frame, they
are moving in two separate directions. In order for the relative speed to be higher at the top, the blades
need to be moving towards the scanning line, and thus, counterclockwise .

120◦

b) Refer to the diagram above. The figure shows one column with a maximum of 2 blades on top at a
time. If there were 2 blades, only one blade should appear at a time. The blades themselves are marked
in black on the figure. It is seen that the angle between the blades is near 120◦. Using our assumption
that they are equally spaced, this implies a 3-blade propeller.

Alternatively, we can label the seven blades at the top A, B, C, D, E, F , and G from left to right.
From inspection, we know that the leftmost blade at the bottom must also be A. This comes from our
assumption that A must be scanned before B, and so on. Furthermore, there couldn’t be any blades in
between or else it would have shown up in the scan. This follows that the second blade at the bottom must
be B, the third must be C, and the fourth must be D. Due to similar reason, the rightmost propeller at

31

Kalda Kinematics 32

the top must also be D. However, we have already stated that this propeller was G. Therefore, G = D.
Continuing counterclockwise, we have F = C, then E = B and D = A = G. With this systematic
labeling, we have completed one loop and can confidently state that there are only three unique blades.
In the diagram below, each unique blade has been coloured with a separate color.

0.9`

`

120◦

c) We track the rotation of any arbitrary blade, the easiest being the red blade from its top left position
to its top right position. This corresponds with a 600◦ rotation (one may be tempted to say a 240◦

rotation but note that the red blade can be seen when the scanning line is at the middle meaning at that
point it has already passed the 240◦ mark.

Using a ruler, we can measure the horizontal distance between the starting and final location to be
0.9` where ` is the width of the photo. If it takes 0.125 s to scan the entire photo, then it takes
0.9 · 0.125 = 0.1125 s for the blade to travel 12

3 revolutions. This corresponds with an angular frequency
of:

f =
5/3

0.1125
= 14.8 Hz ≈ 15 Hz

32

Kalda Kinematics 33

pr 33. i) Assume that we have stuck paper strips with sinusoidal waves on both the combs such that
the crests correspond with the teeth.

For the black comb, teeth exist when

sin
(
~k1 · ~r

)
= 1, k1 =

2π

∆l1

For the gray comb, teeth exist when

sin
(
~k2 · ~r − ωt

)
= 1, k2 =

2π

∆l2
,
ω

k2
= v

(r = 0 where the teeth coincide at t = 0, k1 > k2).

We will see dark regions when

sin
(
~k1 · ~r

)
sin
(
~k2 · ~r − ωt

)
= 1

=⇒ ~k1 · ~r = 2nπ +
π

2
,

~k2 · ~r − ωt = 2mπ +
π

2

=⇒
(
~k1 − ~k2

)
· ~r = 2kπ − ωt

and

~k2 · ~r − ωt = 2mπ +
π

2

(~k1 − ~k2) · ~r = 2kπ − ωt

following a constant phase (i.e. a constant k).

For the first part,

vstripes =
−ω∣∣∣ ~k1 − ~k2

∣∣∣ =

−ω
k2

k1

k2
− 1

=
−v
l2
l1
− 1

= −7v = −7 cm/s

Solution 2 to i) Let ∆l1 be the gap between the teeth of the black comb and let ∆l2 = be the gap
between the teeth of the gray comb.

From the gap between 2 transparent spaces in the given image we can observe that

7∆l2 = 8∆l1

If we observe the teeth of both the combs just before where they coincide, the gap between their centres
will be

∆l2 −∆l1 =
8

7
∆l1 − l1 =

∆l1
7

When this gap is covered, the transparent, and hence dark, stripes move by an entire black comb’s gap
(i.e. ∆l1) backwards

∴ vstripes = −∆l1
∆l1
7v

= −7v = −7 cm/s

33

Kalda Kinematics 34

ii) For the second part, ∣∣∣ ~k1 − ~k2

∣∣∣ ≈√(k2α)2 + (k1 − k2)2

∴ vstripes =
−ω∣∣∣ ~k1 − ~k2

∣∣∣
≈

−ω
k2√

α2 +

(
k1

k2
− 1

)2

=
−v√
α2 +

1

49

= −5.73 cm/s

pr 34. Consider the moment when the angle of the dog-fox line relative to the horizontal is θ.

θ

v

v

r

rx

ry

By splitting the velocity of the dog into is x and y components, we can see that

drx
dt

= −v cos θ = −vrx
r

dry
dt

= v − v sin θ = v − vry
r

By the Pythagorean Theorem, we have that

r2
x + r2

y = r2

Differentiating with respect to time, we see that

2rx
drx
dt

+ 2ry
dry
dt

= 2r
dr

dt

rx

(
−vrx

r

)
+ ry

(
v − vry

r

)
= r

dr

dt

vry − v ·
r2
x + r2

y

r
= r

dr

dt
dr

dt
=
vry
r
− v

34

Kalda Kinematics 35

Note that
dr

dt
+
dry
dt

=
(vry
r
− v
)

+
(
v − vry

r

)
= 0

Integrating with respect to time, we see that r + ry = C, where C is a constant.

Taking the initial conditions of the system we can see that C = L.

Since
dr

dt
is always nonnegative, we can consider the limit as t→∞, at which point r = ry. Therefore,

rmin =
L

2

Solution 2: Notice that at any moment,

−dr
dt

= v(1− cosα) =
dx

dt

This is because the relative velocity of the fox with respect to the fox at any moment along the horizontal
or along the curve the dog follows is the same.

Hence, we have

−v dr = v dx

dr = −dx∫ rmin

√
L2+02

dr = −
∫ 0

rmin

dx

rmin − L = −rmin

rmin =
L

2

35

Kalda Kinematics 36

6 Solutions to Revision Problems

This section will contain problems 35-66 of the handout. Revision problems take concepts and ideas from earlier
problems and place them in a new context. As a result, many of the problems in this section will seem familiar.
This however, does not mean that all the problems in this section are easy. Some of the hardest questions
originate in this section, which takes up nearly half of all the problems in the handout.

pr 35.

v

v sinϕ

v cosϕ

ϕ

Since we have u > v > v sinϕ ∀ 90◦ > ϕ ≥ 0◦, this means that the fast-flowing river carries the boy a
lateral distance of a = (u− v sinϕ)T (where T is the time it takes to reach the other shore) from point
B.

Since the time taken to cross the river is simply T =
L

v cosϕ
, this means that

a =
(u− v sinϕ)L

v cosϕ
=

(2− sinϕ)L

cosϕ

where the last expression is achieved by substituting the given values.

Now, for minimising a, we have

da

dϕ
= L

d

dϕ

(
2− sinϕ

cosϕ

)
=
L(2 sinϕ− 1)

cos2 ϕ

which clearly vanishes at sinϕ = 1
2 or ϕ = 30◦.

Substituting this in the expression for a, we have

amin =
L(2− 1

2)
√

3/2
= L

√
3

36

Kalda Kinematics 37

Solution 2: Let the velocity of the boy with respect to the ground be ~w = ~u+ ~v. Since ~u, the velocity
of the water is fixed and the magnitude of ~v is fixed, we can only change the orientation.

v

u

w

θ

The superposition of all possible orientations fill up a circle as shown. We want the velocity relative to
the ground to make as large an angle as possible. To achieve this, w, u, and v must be the three sides
of a right angled triangle such that:

w2 = u2 − v2 =⇒ w =
√

3 m/s

The time to cross is given by:

t =
L

w sin θ

and the horizontal distance traveled during this time is:

a = w cos θt =
L

tan θ
= L

√
3

pr 36. Let the length of the rope be L, let AO = x, and let A′O′ = y as shown in the diagram below.

A′A

B′B

O

O′

α

x

y

b

v

37

Kalda Kinematics 38

Also let vO be the velocity of ring O.

By the Pythagorean Theorem, we have that

(x− y)2 + b2 = (L− y)2

Taking the derivative, we get that

d

dt
(x− y)2 +

d

dt
b2 =

d

dt
(L− y)2

2(x− y)

(
dx

dt
− dy

dt

)
= −2(L− y) · dy

dt

(vO − v)

(
x− y
L− y

)
= −v

(vO − v) cosα = −v

vO = v

(
1− 1

cosα

)
Note that this velocity is directed upwards along the rail, hence its negative value.

Note that

cotα =
x− y
b

−dα
dt

csc2 α = b · d
dt

(x− y)

dα

dt
=
v

b

sin2 α

cosα

Since we have

cotα =
x− y
b

−dα
dt

csc2 α = b · d
dt

(x− y)

dα

dt
=
v

b

sin2 α

cosα

We get the acceleration of point O as

aO =
dvO
dt

= v secα tanα
dα

dt
=

v2

b
tan3 α

pr 37. The ball can escape the well if at the time at which the ball is at maximum height, it collides
with the wall.

The time between any 2 collisions with the wall is
2R cosα

v0
.

38

Kalda Kinematics 39

The total time of flight of 1 parabola is 2

√
2H

g
. This means that the required condition is then

2p

√
2H

g
=

2qR cosα

v0
, or

pv0

√
2H

g
= qR cosα, p, q ∈ N

pr 38. The ball will have an acceleration a along the wedge to keep the length of the string constant.

Therefore, by drawing the acceleration vectors, we can obtain the following diagram:

a

a
α

180− α

We then find from law of cosines that

anet =
√

2a2 − 2a2 cosα

= a
√

2(1− cosα)

= a

√
4 sin2

(α
2

)
= 2a sin

(α
2

)

pr 39. At that moment, the acceleration of the dog is equal to

~a =
d~v2

dt
= v2

dθ

dt
r̂

By Idea 37, we have the angular velocity of the relative position vector as

dθ

dt
=
v1 sin 90◦

`
=
v1

`

Hence, from the two relations, the acceleration of the dog is

a =
v1v2

`

39

Kalda Kinematics 40

pr 40. Consider the moment when the cone is right on the edge and take the reference frame of the
cone. In this reference frame the corner of the table is moving to the left with velocity v and has upward
acceleration of g.

The corner of the table is essentially a projectile that is launched horizontally with velocity v and has to
not touch the cone. The minimum value for v will then result in the trajectory where the corner touches
the top of the cone.

v

h

r

The corner has to take time
r

v
to reach the corner. In this time it has to travel

h =
1

2
g
(r
v

)2

v = r

√
g

2h

pr 41. The rope will intuitively be something like a spiral.

Since the rope can go up to infinity, let’s consider the last point instead. We set the point where all the
shockwaves coincide at the origin and we use polar coordinates since we are going to be dealing with
distances.

The rope lies along the curve r(θ), where r(0) is the last point to be ignited. It takes time r(0)/c for
the shockwave from the last ignition point to reach the origin. If we go back an angle dθ along the rope,
then it takes time

r(dθ)

c
− ds

v

40

Kalda Kinematics 41

for that shockwave to reach the origin, where ds is the infinitesimal arc length. Note that

ds =
√
r2dθ2 + dr2.

We can set up our differential equation from this knowledge. For each r(θ), we want

r(θ + dθ)− r(θ)
c

=
ds

v

Divide both sides by dθ to get

r′/c =
√
r2 + r′2/v

Square both sides to get
r′2

c2
=
r2

v2
+
r′2

v2

Combining like terms and simplifying gives us

dr

dθ
= r

√
c2

v2 − c2

This is a separable differential equation which gives us solution

r = Ce

√√√√ c2

v2 − c2
θ

pr 42.

v0

B1

B2

B3

C1

C2

C3

A0 A1 A2 A3

d

d/2

d/6

Since each of the rhombi deform at the same rate, we can apply homothetic transformations H(A0, d/6)

41

Kalda Kinematics 42

and H(A0, d/2) along line A0A3 to see that

vA1 =
v0

6
, vA2 =

v0

2

Applying Idea 35 on lines A1B2 and A2B2, we see that vB2 has a component of
v0 cos(45◦)

2
along

−−−→
B2A2

and a component of
v0 cos(45◦)

6
along

−−−→
A1B2.

Using the Pythagorean theorem, we see that

vb =

√√√√(v0

√
2

4

)2

+

(
v0

√
2

12

)2

=
v0

√
5

6

Since the horizontal velocities of all the points are constant, the acceleration of B2 must be directed
downwards.

Moving into the frame of reference of A2, we can apply Idea 35 to see that vB2 =
v0 cos(45◦)

3
and is

directed along
−−−→
B2A1.

Thus, the centripetal acceleration of B2 is

aC =
v2
B2

2l
=

v2
0

36l

directed along
−−−→
B2A2.

The tangential component must balance out the centripetal component and result in a net downwards
acceleration, so

aT = aC =
v2

0

36l

and

aB2 =
√
a2
T + a2

C =
v2

0

√
2

36l

pr 43. Consider the following setup:

A B
l

~v1

~v2

α
β

42

Kalda Kinematics 43

Now, we move into the reference frame of the boat that departed from harbour A.

A B

~v1

~v2

α

β
φ

vrel
d

Since ~vrel = ~v2 − ~v1, we can separate them into components to find that

tanφ =
|v1 sinα− v2 sinβ|
|v1 cosα+ v2 cosβ|

From this, we can find that

sinφ =
|v1 sinα− v2 sinβ|√

v2
1 + v2

2 + 2v1v2 cos(α+ β)

We then have

d = l sinφ

=
l · |v1 sinα− v2 sinβ|√

v2
1 + v2

2 + 2v1v2 cos(α+ β)

pr 44. Because the ropes are constantly being unwinded at a rate of ωR , the disk has to move in
the direction of the strings to keep the strings in tension the whole time. Using this information we can
create a diagram

ωR

ωR

v

α/2

Now using trig we can see that cos
α

2
=
ωR

v
or v =

ωR

cos α2
.

43

Kalda Kinematics 44

pr 45. We tilt the plane by an angle α. This then gives us the following diagram

g sinα

g cosα

A

B
b

a

the ball is a distance b away from wall B and a distance a away from wall A. Let ta and tb be the jumping
periods.

a =
1

2
g cosα

t2a
4

=⇒ ta = 2

√
2a

g cosα

and

b =
1

2
g sinα

t2b
4

=⇒ tb = 2

√
2b

g sinα
.

On average, the ball bounces against A for each time it bounces against wall B in a ratio of

ta
tb

=

√
a tanα

b

pr 46. First, note that L = 2πrk

By idea 21 (tension is perpendicular to direction of motion), the velocity v of the block remains constant
throughout the motion.

Let l be the length of the portion of the string not in contact with the cylinder.

The angular velocity about the point of tangency with the cylinder is ω =
v

l
.

Note that r
dθ

dt
=
dl

dt
.

rω =
dl

dt
=⇒ rv

l
=
dl

dt
=⇒ rv = l

dl

dt

rv =
1

2

d(l2)

dt
=⇒ l2 = 2rvt since l0 = 0

t =
l2

2rv
=

2π2rk2

v

Note that the string also completes an additional semicircle without changing length before starting to
wrap back around again.

44

Kalda Kinematics 45

r

L

Therefore, our final time is t = 2 · 2π2rk2

v
+
π(2πrk)

v
, or

t =
2π2kr(2k + 1)

v

pr 47. If the velocity of the box is represented by the vector v3, then the projection of v3 onto v1 must
be equivalent to v1 and the projection of v3 onto v2 must be equivalent to v2.

Essentially this means that v3 must be composed of the sum of v1 and a vector perpendicular to v1 and
likewise for v2. This gives us the following diagram:

v1

v2

α

A
D

B

C

v

We want to find the magnitude of AC. Since this quadrilateral is formed by two right triangles, it is a
cyclic quadrilateral.

45

Kalda Kinematics 46

Since ∠BDA and ∠BCA are inscribed angles of the same arc, they are congruent. Using the law of
sines, we get that

BD

sinα
=

AB

sin∠BDA
,

AB

sin∠BCA
= AC

Since

∠BDA = ∠BCA,
BD

sinα
= AC

Using the law of cosines, BD =
√
v2

1 + v2
2 − 2v1v2 cosα, so

AC =

√
v2

1 + v2
2 − 2v1v2 cosα

sinα

Solution 2: Similar to above, but let us denote ∠CAD = θ such that we have v2 = v cos θ and
v1 = v cos(α− θ). We can rewrite v1, using the cosine addition formula as:

v1 = v (cosα cos θ − sin θ sinα) = v2 cosα− v sin θ sinα

We can solve for sin θ to be:

sin θ =
CD

AD
=

√
v2 − v2

2

v

Substituting this in, we get:

v1 = v2 cosα− v

(√
v2 − v2

2

v

)
(v2 cosα− v1)2 = (v2 − v2

2) sin2 α

v2
2 cos2 α+ v2

1 − 2v1v2 cosα = v2 sin2 α− v2
2 sin2 α

Rearranging and solving for v gives:

v =

√
v2

1 + v2
2 − 2v1v2 cosα

sinα

pr 48. i) Let ĵ be directed North and let î be directed East.

Then, the initial velocity is v ĵ and the final velocity is v î.

We then have that

∆~v = v î+ v ĵ

|∆~v| =
√

2v

= a∆t

46

Kalda Kinematics 47

Since a = µg,

∆t =

√
2v

µg

ii) Since the optimal trajectory requires acceleration (in both magnitude and direction) to be constant,

we see that the trajectory shape is simply that of a ball under free-fall (i.e. a parabola)

pr 49.

v0

O

(x, z)

The equation for the trajectory of the ball (see problem 19) is

z =
v2

0

2g
− g

2v2
0

x2

By the equation of the circle,
x2 + (z −R)2 = R2

x2 + z2 − 2xR = 0

x2 +

(
v2

0

2g
− g

2v2
0

x2

)2

− 2R

(
v2

0

2g
− g

2v2
0

x2

)
= 0(

g2

4v4
0

)
x4 +

(
v2

0 − 2gR

2v2
0

)
x2 +

(
v2

0 + 4gR

4g2

)
v2

0 = 0

We set the discriminant of the above equation to zero for the optimal trajectory to get(
v2

0 − 2gR

2v2
0

)2

− 4

(
v2

0 + 4gR

4g2

)
v2

0 ·
g2

4v4
0

= 0

Solving this for v0 gives

v0 =

√
gR

2

By conservation of energy we have
1

2
mv2 =

1

2
mv2

0 + 2mgR

v =
√
v2

0 + 4gR =

√
9gR

2

a

aThis problem was found in the 2012 IPhO

47

Kalda Kinematics 48

pr 50. We note that a time interval of 3 flashes occur for one full rotation of the disk.

This corresponds to a time interval of 3t = 0.3 s

We also know that the distance between the top and the bottom of the lamp’s trajectory is 2a = 9.0 cm.

This corresponds (on the figure) to 6 squares of space.

The horizonal distance between two red flashes at the bottom of the trajectory is approximately 4 squares,
which corresponds to a horizontal distance of 6.0 cm

Thus, the speed of the center of the disk is v =
6 cm

0.3 s
= 20 cm/s

pr 51. i) Note that the total time is
2a

v
, so the cars can each only travel along 2 segments.

Since vdist is never positive, the two cars are always approaching each other (aside from a brief instant

at t =
a

v
).

From this, we note that both cars must end up at city O.

If the two cars started from cities A and B, then their initial vdist would have been 0.

If the two cars started from cities B and C, then their initial vdist would have been v0

√
2.

This leaves only the option that the two cars started from A and C and both ended at O .

ii) Since the area under a velocity graph is just distance, the area under this velocity graph is the

difference between the distance between the two cars at time t = 0 and time t =
a

v
.

Thus, our answer is

2a−
√

2a = (2−
√

2)a

iii) A−B :

For the first segment, the cars have the same velocity, so vdist = 0.

For the second segment, the cars face each other, so vdist = −2v.

vdist

−2v

t

a
v

2a
v

48

Kalda Kinematics 49

B − C :

For the entire course of the motion, the velocity vectors of the two cars are perpendicular to each other
and both cars approach each other, so

vdist = −
√

2v

vdist

−
√

2v

t

a
v

2a
v

iv) B − C :

As they turn, the cars face each other and then turn to perpendicular again, so vdist goes from −
√

2v to
−2v and back to −

√
2v.

vdist

−
√

2v

−2v

t

a
v

2a
v

49

Kalda Kinematics 50

pr 52. If we shift into a reference frame rotating counterclockwise with angular velocity ω/2 about
point A, we can note that the intersection point I moves along a straight line in this reference frame.

A

I

O1 O2

ω/2 ω/2

θ

2R sin θ

We have that

AI = 2R sin θ

d(AI)

dt
= 2R cos θ · dθ

dt
= ωR cos θ

In the non-rotating reference frame, we have that

~vground = ~vrotating +
~ω

2
× ~r

= ωR cos θ ĵ − ω

2
· 2R sin θ î

= ωR

Solution 2: Let the first ring be centered in (0, 0), so that its equation is x2 + y2 = r2, and let the
position of point O be (xo, yo).

We know that the second ring is centered at (xo + r cos(ωt), yo + r sin(ωt)), so its equation is

(x− (xo + r cosωt))2 + (y − (yo + r sinωt))2 = r2

The two solutions to this system of equations are (xo, yo) and (r cos(ωt), r sin(ωt)), since x2
o + y2

o = 1.

But then those are the coordinates of the second intersection point, and that means that the point moves
in a circle of radius r with angular velocity ω and therefore its speed is constant and equal to ωr .

Solution 3: The point of intersection follows the arbitrary curve ρ = 2rcosθ with angular speed ω/2
(we use ρ here to distinguish between the radius of the circle).

The speed of the point is

ds

dt
=
ds

dθ
· dθ
dt

=
ω

2

√
ρ2 +

(
dρ

dθ

)2

=
ω

2
(2r)

√
cos2 θ + sin2 θ = ωr

50

Kalda Kinematics 51

pr 53. Note that a point on a spoke will appear motionless (i.e. sharp) if it’s velocity is directed along

(or parallel to) the spoke.

Let the horizontal velocity of the bike be ~v, with |~v| = ωR.

R

(0, 0)

θ

~v

r

ωr
θ

Since the tangential velocity is perpendicular to the radial distance vector, we need ωr = |~v| cos θ =
ωR cos θ, or r = R cos θ

Labelling the center of the wheel as (0, 0) we can determine that the set of points can be represented as
the parametric equation

x = −R cos θ sin θ, y = −R cos2 θ

Note that

x2 + (y +R/2)2 = R2 cos2 θ sin2 θ +R2 cos4 θ −R2 cos2 θ +
R2

4
=
R2

4

Since we have x2 + (y +R/2)2 =

(
R

2

)2

, the set of points on the spokes that appear sharp is described

by a circle of radius
R

2
centered at

R

2
below the center of the wheel

pr 54. a) We notice that there is no image of the orange pulse, hence it must have taken place
immediately before the shutter release. So the blue pulse is first, then red, then green, and finaly yellowl.
As 4 pulses are recorded exposure time must be between 300 ms and 500 ms.

b) In the frame of disk’s centre, the displacement vector ~d between neighbouring flashes has always the
same modulus

d = 2R sin(ωτ/2),

and neighbouring displacement vectors are always rotated by the same angle ωτ . In the lab frame,
additional constant displacement vector ~vτ is to be added due to the translational motion of the frame:

~d′ = ~d+ ~vτ.

51

Kalda Kinematics 52

Because of that, if we bring all the displacement vectors to such positions that their starting points
coincide, the endpoints will lie on a circle of radius d. So, we redraw the displacement vectors ~br, ~rg,
and ~gy draw the circumcircle of the triangle formed by the endpoints of the vectors

O

B

A

C

D

From the figure we measure rotation angle

ωτ = 2.2 rad⇒ ω = 22 rad/s.

The constant displacement
a = vτ = 6.55 cm⇒ v = 65.5 cm/s

and the circle’s radius
d = 2R sin(ωτ/2) = 8.27 cm⇒ R = 4.6 cm .

pr 55. Let the distance between the minor gridlines provided be d.

We note that d is also (approximately) the diameter of the water jet.

We can use the points (0, 0), (20d,−5.5d), and (30d,−12.5d) to find the equation of the water trajectory,
which we determine to be

y = −0.014

d
x2

The trajectory of the water is also given by the parametric equation x = vt, y = −g
2
t2, which gives

y = − g

2v2
x2

Thus, we have

0.014

d
=

g

2v2
=⇒ v =

√
gd

0.028

Since the pipe outflow rate must be the same as the bucket inflow rate,

πd2v

4
=
πd2

√
gd

0.028
4

=
V

t

52

Kalda Kinematics 53

This equation gives

d =

(
4V

πt

√
0.028

g

)2/5

= 1.03 mm

pr 56. Consider the following diagram:

A

Since the velocity of both the boat and river are constant, the litter must lie on the same line as the
boat it fell from, so we can deduce that the bottom two pieces of litter are from the boat marked with a
triangle.

Thus, the boat marked with a triangle must have come from point A and the boat marked with a square
must have come from the other side of the river (or else the other boat would not have been able to drop
its litter above itself) Then, we can draw the following lines:

A

river flow directionP

Since the river flow velocity is only directed horizontally, the boats meet at a point on the line parallel
to the banks and passing through point P . Since we already have the path of the boat marked with a
triangle, we can connect that intersection point with the square and extend it to the opposite bank to
get the departure point of the boat marked with a square:

53

Kalda Kinematics 54

A

river flow directionP

B

And so Point B is the departure point of the second boat.

pr 57. Let d denote the common distance of separation between adjacent cars (it’s the same for all

lanes)

The flow rate (in cars/s) of the cars entering lane A is equal to
vA
d

The flow rate (in cars/s) of the cars entering lane B is equal to
vB
d

Note that vA = 3 km/h and vB = 5 km/h

By idea 39, the flow rate (in cars/s) of the cars entering lane C must be

vA
d

+
vB
d

This means that the velocity of the cars in lane C is simply

vA + vB = 8 km/h

Thus, our final answer is
1 km

3 km/h
+

2 km

8 km/h
= 0.583 h = 35 min

pr 58. a) Consider a rectangular prism of length l, width w, and height h.

Assume that the volume of rain that the man receives per second is proportional to Avr by some
proportionality factor k, where A is the cross sectional area of where the rain strikes and where vr is the
velocity of the rain.

Let V be the critical volume of rain needed for the man to ”get wet”.

When the man is not moving, we find that

V = Akvrt1 = lwkvrt1

54

Kalda Kinematics 55

When the man is moving at speed vm, in his frame of reference, the rain falls on him at an angle

θ = arctan

(
vm
vr

)
to the vertical at a speed of

√
v2
r + v2

m, as shown in the following diagram:

θ

θ
l

h

l cos θ

h sin θ

Thus, we see that
V = Ak

√
v2
r + v2

mt2 = w(l cos θ + h sin θ)k
√
v2
r + v2

mt2

Since we have cos θ =
vr√

v2
r + v2

m

, sin θ =
vm√
v2
r + v2

m

, the expression is equivalent to

V = w(lvr + hvm)kt2

We now have

lwkvrt1 = w(lvr + hvm)kt2 =⇒ vr =
hvmt2

l(t1 − t2)

Plugging in vm =
18

3.6
m/s, t1 = 120 s, t2 = 30 s, we get that

vr =
5h

3l
m/s

This gives, for

vm = 6 km/h, t =
lvrt1

lvr + hvm
= 60 s

b) Consider a sphere of radius R.

Assume that the volume of rain that the man receives per second is proportional to Avr by some
proportionality factor k, where A is the cross sectional area of where the rain strikes and where vr is the
velocity of the rain.

Let V be the critical volume of rain needed for the man to ”get wet”.

When the man is not moving, we find that

V = Akvrt1 = πR2kvrt1

When the man is moving at speed vm, in his frame of reference, the rain falls on him at an angle

θ = arctan

(
vm
vr

)
to the vertical at a speed of

√
v2
r + v2

m, as shown in the following diagram:

55

Kalda Kinematics 56

θ
θR

2R

Thus, we see that
V = Ak

√
v2
r + v2

mt2 = πR2k
√
v2
r + v2

mt2

We now have
πR2kvrt1 = πR2k

√
v2
r + v2

mt2 =⇒ vrt1 =
√
v2
r + v2

mt2

Solving the system of equations with vm =
18

3.6
m/s, t1 = 120 s, t2 = 30 s, we get

vr =
vmt2√
t21 − t22

=

√
15

3
≈ 1.29 m/s

This gives, for vm = 6 km/h,
t = 30

√
6 ≈ 73.5 s

pr 59. The length of the trails is defined by the time interval during which the droplet’s image remains
within the gap between the curtains.

This, in turn, is inversely proportional to that component of the image’s relative velocity which is
perpendicular to the curtain’s edge.

In first case, the velocity of the curtains ~v and the velocity of the droplet’s image ~u are parallel, in
the second case antiparallel, and in the third case perpendicular. In the antiparallel case there are two
possibilities as we don’t know which is faster, the curtain or the image.

Thus, the time of appearance of a sufficient trail is
d

|u± v|
and trace length l =

vd

|u± v|

Let u ≥ v; then

l1 =
vd

u+ v
, l2 =

vd

u− v

By dividing the second equation by the first one, we get
u+ v

u− v
=
l2
l1

=
5

3
, of which

3u+ 3v = 5u− 5v ⇒ u = 4v

56

Kalda Kinematics 57

If the camera is in portrait position, then a sufficient image is present in the slit during d/u, so the trail
length is

l3 =
vd

u

l3
l1

= 1 +
v

u
=

5

4
=⇒ l3 =

5

4
l1 = 150 pixels

If u < v, only the second equation changes, l2 =
vd

v − u
, so 3u+ 3v = 5v − 5u and u = v/4, so

l3 = 5l1 = 600 pixels

pr 60.

L

Measuring the diameters of the wave fronts, we get approximately:

d1 = 0.09L

d2 = 0.39L

d3 = 0.90L

d4 = 1.61L

d5 = 2.52L

d6 = 3.53L

d7 = 4.54L

Let the time between successive snapshots be ∆t.

According to the question, the wavecrest initally moves out with acceleration a =
g

π
.

57

Kalda Kinematics 58

This gives

x =
gt2

2π
=⇒ t =

√
2πx

g

Plugging in the first couple values of d, we find that

∆t ≈

√
0.1πL

g

Also according to the question, the wavecrest approaches a terminal velocity v∞ =
√
hg.

We can approximate this equation as

1.01L

∆t
=

1.01L√
0.1πL

g

=
√
hg

Simplifying, this gives h ≈ 3.2L .

pr 61. Consider the following diagram:

L

R

t = 0 t = πR
v

θ

At time t, the boat has has swept out an angle

θ =
vt

πR
· π =

tv

R

Thus, at time t, the boat is at a distance L−R sin

(
vt

R

)
away from the shore.

Therefore, at time t2, the wavefront that was emitted at time t1 is at a distance L−R sin

(
vt1
R

)
−u(t2−t1)

away from the shore.

We wish to find the minimum possible t2 such that the equation L−R sin

(
vt1
R

)
− u(t2 − t1) = 0 has a

real solution for t1.

58

Kalda Kinematics 59

To do this, we isolate t2 to find that

t2 =

L−R sin

(
vt1
R

)
u

+ t1

Taking the derivative with respect to t1 and setting it to zero, we get that 1−
v cos

(
vt1
R

)
u

= 0, or

t1 =
R

v
arccos

(u
v

)
Since u < v, this is a valid solution, so we plug t1 back into our expression for t2 to find that

t2 =
L−R sin

(
arccos

(u
v

))
u

+
R

v
arccos

(u
v

)
We have that

sin
(

arccos
(u
v

))
=

√
v2 − u2

v

Therefore,

t2 =
R

v
arccos

(u
v

)
+
L

u
+R

√
1

u2
− 1

v2

pr 62. The waves move symmetrically about boat’s trajectory in river’s reference frame. In river’s
reference frame trajectory of boat is on angle bisector of the wave angle.

QR
O

P O

R Q

Direction of boat’s speed relative to ground is from A to B. Let u be water speed. Then v, u and boat’s
speed relative to ground form a right triangle.

sin(∠RQO) =
u

v
=⇒ 0.26 =

u

v
=⇒ u = 1.82m/s

We also note that
OP = ωt

and
OQ = vt

59

Kalda Kinematics 60

Therefore,
ω

v
=
OP

OQ
= 0.64 =⇒ ω = 4.48 m/s

and

h =
ω2

g
= 2.05 m

pr 63. a) Let us examine an arbritary point B on the road defined by the light gray color. The point
of intersection of B with the gas trail represents C.

A B

ut

C

v0t

The smoke will have traveled a distance |BC| = ut, where u is the speed of the wind. In the time t, the
tractor will have travelled a distance v0t. By measuring we find that

|AB| = 7.1 cm, |BC| = 3.1 cm.

We then find that

u = v0
ut

v0t
= v0

|BC|
|AB|

= 30 km/h · 3.1 cm

7.1 cm
≈ 13 km/h

b) Label the initial point of the tractor on the left to be A, the origin to be O, and the initial point of
the tractor on the right to be B.

A

O B

v0t

v0t

C

D

ut

60

Kalda Kinematics 61

We note that |AO| = v0t, thus if we extrapolate the line on the other road, we find that |OC| = v0t.
Therefore, we find point C. The smoke trail of C can be found to be parallel to the smoke trail at B. If
we extrapolate both smoke trails at A and C, we then find point D.

Therefore, we find that the meeting of the smoke trails of both tractors to be |OD| = ut.

Therefore,

u = v0
ut

v0t
= v0

|OD|
|OC|

= 30 km/h · 4.9 cm

7.0 cm
≈ 21 km/h

pr 64. In the freefalling frame, both balls move with a constant velocity. Let us define point Q as
where both A and B are an equal distance from each other.

To find where Q is, we can connect line |AB| and find the perpendicular bisector (which can be done
using a compass and a straight-edge). We also draw a vertical line down P . Q is found where this line
and |AB|⊥ connects.

In the lab frame, Q is freefalling and thus after a time t it has fallen a distance |PQ| = gt2/2. We know
measure and see that

|PQ| = 8.6 cm, |AQ| = 26 cm

we now find that

|PQ| = 1

2
gt2 =⇒ t = 1.3 s

and using d = vt (because of a constant acceleration), we find that

|AQ| = 1.3v =⇒ v ≈ 20 m/s

pr 65. We consider the boat in the frame of reference of the air. Since we have the wind measurements,
we can find the displacement of the boat in the frame of reference of the air. We’ll be taking south and
east as positive.

During the first segment we have the wind blowing east, so in the frame of reference of the air, the boat
is displaced east by

x1 = 60v1t1

.

The 60 is there for a unit conversion of the time to seconds.

We do the same for the second leg, however we must account for the fact that the wind blows southeast,
so there is both a southern displacement and an eastern displacement.

x2 = 60v2 cos(π/4)t2 = 30
√

2v2t2

y2 = 60v2 sin(π/4)t2 = 30
√

2v2t2

Similarly for the last leg, we have that

x3 = 60v3 cos(3π/4)t3 = −30
√

2v3t3

y3 = 60v3 cos(3π4)t3 = 30
√

2v3t3

61

Kalda Kinematics 62

The total southern displacement is

y = 30
√

2v2t2 + 30
√

2v3t3 ≈ 955 m

The total eastern displacement is

x = 60v1t1 + 30
√

2v2t2 − 30
√

2v3t3 ≈ 3018 m

Since the displacement in the lab frame is south 4000 m, we can find the displacement caused by the
wind (in the lab frame) as 4000− y south and −x east. From there we just divide by the total time to
find the wind speed as it’s constant, so

vwind =

√
(4000− y)2 + (−x)2

60(t1 + t2 + t3)
=

√
30452 + 30182

60
≈ 12 m/s

pr 66. Call the balls a1, a2, a3, . . . aN .

When all the balls are released their comparative velocities will not change (i.e. if the velocity of ai is
initially less than that of aj , then it will always be less than that of aj at all times).

When two identical objects collide elastically, their velocities will switch. This is essentially the same
as the two objects phasing through each other. So instead, let us assume that the balls never change
direction and continue to phase through each other and instead we are trying to calculate the number
of times a ball phases through another ball.

These ideas can be combined to conclude that each ball can at most only phase through each other ball
exactly once, so the maximum would result from each ball phasing through every other ball exactly once
for a final answer of

N(N − 1)

2

62

	Solutions to Velocities Problems
	Solutions to Accelerations/Displacements Problems
	Solutions to Optimal Trajectories Problems
	Solutions to Rigid Bodies/Hinges/Ropes Questions
	Solutions to Miscellaneous Problems
	Solutions to Revision Problems

	fd@output-32:

